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This paper investigates the use of large language models (LLMs) for moderating online 

discussions, with a focus on identifying user intent in various types of content. It centers on 

natural language processing (NLP) techniques to detect toxic language, derailment in 

discussions, and problematic comments. The study creates prototypes of such tools, 

utilizing LLMs. Then we evaluate our tools using datasets in both English and German, as 

the effectiveness across different languages may vary. This research explores content 

classification through methods such as sentiment analysis, keyword extraction and topic 

modeling, employing non-binary labeling for a deeper analysis of online interactions. The 

paper also discusses the limitations of current LLMs, including the challenge of false 

positives due to limited training data. It concludes with ideas towards improving model 

fine-tuning to better address specific platform needs and linguistic variations. This work 

contributes to understanding how AI can support decisions in moderating online spaces and 

fostering healthier digital communication environments. 



1. Introduction

The field of artificial intelligence (AI), particularly natural language processing (NLP), is pivotal
in the classification of intent. Our study utilizes the concept of AI-assisted moderation in online
discussions as a practical example to demonstrate the latest NLP techniques. These methods are
explored as potential aids for moderators in making informed decisions. This paper is based on first
author’s thesis (Gehweiler, 2023).

While AI-based moderation using NLP has been previously explored, as in the systematic
review (by Jahan and Oussalah, 2023), our approach differs significantly. We concentrate on the
practical application of these methods, assessing the effectiveness of freely available NLP tools for
moderation tasks. Our focus is not on the more advanced commercial solutions but rather on tools
that can be deployed independently. Our approach offers a unique perspective on the accessibility
and applicability of NLP techniques in real-world moderation scenarios.

1.1. Online communities and moderation

Online communication, a vital aspect of modern life, enables global connections but is often
marred by problematic behaviors like trolling, hate speech, offensive language, and cyberbullying.
These actions, which frequently violate online platform policies, are detrimental to healthy discourse
and can be executed with malicious intent or for the perpetrator’s amusement. AI-based solutions
are increasingly sought to automatically identify and classify such problematic content in online
discussions.

The need for technical assistance in moderating online discussions arises for multiple reasons.
As internet access broadens to include more diverse backgrounds, there’s a shift from the early “Wild
West” days of the internet to a more regulated environment where awareness of toxicity is crucial.
This evolution necessitates that content platform operators rapidly and effectively identify harmful
content. Moderators seek to base their decisions on objective, quantified data, gaining insights into
discourse statistics. Certain topics and sections are prone to attracting undesirable discussions; such
areas require closer scrutiny. AI-based analysis can pinpoint these topics, enhancing monitoring
efforts.

Employing AI for content classification empowers moderators to detect problematic content
accurately and on a large scale, adapting to the dynamic nature of online communication. Such
assistive tools can not only increase moderation objectivity but also foster a positive online environ-
ment by eliminating harmful content. Furthermore, automated tools offer valuable insights into the
prevalence of toxic behavior, quantifying discourse and identifying trends, patterns, and hotspots
of problematic behavior. This data is instrumental for content providers in developing targeted
strategies and countermeasures to effectively address above issues.

1.2. Classes of content

Multiple categories of contributions to moderation and data-collection in online discussions
exist. First method involves assigning a rating label to the content, which can be classified as
positive, neutral, or negative. Positive content encompasses expressions of feedback, support, and
agreement directed towards a topic or individual. Neutral content refers to comments that are neither
positive nor negative, typically being factual or purely informative in nature. Conversely, negative
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comments are characterized by hostility or negativity towards a specific topic or individual. Such a
classification might either have the form of a fixed label (positive, neutral, and negative) or a rating
float, on a scale from, e.g., −1 to 1.

Another aspect of online discussions is if the content is written about the topic (on-topic) or
outside the scope of the discussion and the broader topic (off-topic). Certain topics might also
be not tolerated e.g., political discussions. Content may also be written in a different language or
languages, which should be taken into account.

Other classes of content can be forbidden by terms of service, code of conduct, or the law. Fake
news, hate speech, and misinformation can be typically undesirable in online platforms, as well
other kinds of misconduct. Another significant concern for platform operators is the detection of
illegitimate discussion behaviors, such as those employed in “trolling”. This includes the use of
fallacies as part of logically invalid reasoning and strategies aimed at derailing discussions.

Spam constitutes a further category in online discussions. Characterized by its repetitive and
unsolicited nature, spam is posted for promotional purposes. Qualitatively categorizing content is
also a possibility, for example in how much effort is put into writing a comment, the count of words
it is using and the creativity in the usage of words.

Finally, we also need to consider the language used in the content. The content can be written
in a language typically used on the platform, in a different language or a mix of different languages.
The content might also contain regional dialects, vernacular (“slang”), intentional and unintentional
misspellings, and memes.

1.3. Natural language processing
A major challenge in understanding comments written in online discussions is the processing of

comments. Human communication and language can be complex and textual data of communication
on the internet are typically created in an unstructured magnitude. In recent years, NLP as a
discipline of linguistics and AI has emerged as a potent tool for analyzing and extracting context
and information from textual data with the help of deep learning (DL) as a subset of AI.

NLP techniques allow the automated processing and interpretation of a wild field of human
languages and bring a deep understanding with techniques such as sentiment analysis, named entity
recognition, topic modeling and further techniques (Kumar and Renuka, 2023).

We aim to uncover sentiments, context, and semantic meanings within texts and to classify
comments regarding the underlying intention by looking at their various aspects and by using
different tools. The presented methods leverage techniques of NLP.

1.4. Structure of the paper
The following text of the paper is structured as follows. First, in Section 2 we present the

specifics of language models, particularly transformers, and other large language models. We
also explore sentiment analysis, detection of inappropriate content, keyword extraction and topic
modeling, language detection, and spam detection. Section 3 details on our experimental approach,
including data sources, evaluating results, and implementation specifics. (Further details are supplied
in the appendix.) The results are presented in Section 4. In Section 5 we discuss the limitations
of our approach, the output of the application, ethical considerations. The paper concludes with a
summary of our findings and a look at potential future research directions in this field in Section 6.
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2. Language models and applications in AI

2.1. Transformers

Transformer architectures (Vaswani et al., 2017) and large language models (LLMs) based on
them are especially helpful in understanding the context. Such models include BERT, RoBERTa,
and XLNet. Transformers were introduced by Vaswani et al. and are relying solely on an attention
mechanism instead of recurrent or convolutional layers. Thus, a high parallelization and translation
with a relatively short training period of the model became viable.

Before the emergence of transformers, recurrent neural networks were commonly used in
NLP tasks (Rothman, 2022). Recurrent neural networks have the disadvantage of exploding or
vanishing gradients, which means that the model in the sequential input the prior inputs are not
considered sufficiently, causing the model to become untrainable (Yildirim and Asgari-Chenaghlu,
2021). Another issue is the lack of parallelization due to the sequential input. The recurrent neural
network architecture also had an issue with long-term dependency, where the terms far from
each other were difficult to process. Some of the issues, especially the long-term dependency
problems were addressed with the development of long short-term memory and gated recurrent unit
architectures (Yildirim and Asgari-Chenaghlu, 2021).

The limitations in recurrent neural networks paved the way for the development of transformers,
which use the attention mechanism to better capture global relationships in text and parallel
processing to speed up training times (Vaswani et al., 2017). Vaswani et al. introduced a self-attention
mechanism, which evolved the idea of processing data sequentially for each word independently
(Fig. 1). In traditional methods before the introduction of the transformer model, a sentence in
recurrent neural networks and long short-term memory networks would be processed one word at a
time and without considering the context of the data within a sentence. In a contrast, a transformer
model allows the parallel processing of the data and considers the context, i.e., the surrounding
words. The attention (“scaled dot-product attention”) in the transformers model factors in relevance
of each word in each sentence in relation to other words (Vaswani et al., 2017).

The input and output embeddings in transformers represent the input and output tokens as
continuous vectors, capturing their semantic meaning. Positional encoding is used to provide the
model with positional information since transformers lack sequential structures. It assigns unique
vectors to each position in the input sequence, enabling the model to understand word order and
context. Multi-head attention allows the model to capture different dependencies and relationships
within the input by performing attention computations in parallel.

In transformers, self-attention is typically used in a multi-head fashion, where multiple attention
heads are computed in parallel. Each attention head is responsible for capturing different dependen-
cies and aspects of the input sequence. The outputs of the attention heads are linearly transformed
and concatenated to obtain the final output of the self-attention layer.

2.1.1. Bidirectional Encoder Representations from Transformers
The BERT language representation model was introduced by Devlin et al. in 2018 (Devlin

et al., 2019). BERT stands for “Bidirectional Encoder Representations from Transformers” and is a
pre-trained transformer encoder stack.

4



Figure 1: The transformer model architecture, redrawn from (Vaswani et al., 2017).

5



One technical advancement introduced with the BERT model is the bidirectional training for
language model (LM) purposes. A LM trained in both directions has a greater context awareness
compared to models trained in one direction. This paper introduced a training method called
“masked LM” and it makes usage of next sentence prediction, which allows taking the context in a
sentence into account. BERT is trained to predict missing words in a sentence in the masked LM,
which have been randomly masked out (Devlin et al., 2019). The model is then trained to learn the
context of the surrounding words to accurately predict the missing word, which requires the model
to capture bidirectional relationships between the words in a sentence. The model also predicts the
next sentence to predict whether two sentences are consecutive, to understand the relation between
sentences and the overall structure (Devlin et al., 2019).

After the pre-training on large amounts of unlabeled text data, BERT can subsequently be
fine-tuned on specific NLP tasks such as sentiment analysis, named entity recognition, question
answering and other tasks to achieve transfer learning. Fine-tuning involves training the model
on labeled data for the specific task while keeping the pre-trained weights fixed. One model size,
BERTBASE utilizes 110 million parameters, 12 attention heads, 768 hidden nodes, and 12 layers.
The larger BERTLARGE utilizes 24 layers, 1024 hidden nodes, 16 attention heads, and 340 million
parameter values (Devlin et al., 2019).

2.1.2. Further improvements and other large language models
Based on BERT, a smaller model with the name TinyBERT has been proposed by Jiao et al.

in 2020 (Jiao et al., 2020). Compared to BERTBASE, it achieves 96.8 % of the performance on the
GLUE benchmark using four layers, while being 7.5 times smaller and 9.4 times faster, while having
the same performance of BERTBASE when using six layers. This makes TinyBERT suitable for
real-time analysis of online discussions taking place on resource-restricted devices.

In addition to BERT, there are several other LLMs with significant contributions to the field of
NLP. One popular LLM aside from BERT and BERT-based models is the generative pre-trained
transformer (GPT) (Radford et al., 2018). GPT makes use of task-aware input transformations
during fine-tuning on each specific task, as well as a generative pre-training of a LM, which allows
high performance in various NLP tasks.

One recent improvement in the field of LLMs was the introduction of Low-Rank Adaptation of
Large Language Models (LoRA) as a training method, which significantly accelerates the training of
LLMs and reduces the memory footprint by using pairs of rank-decomposition weight matrices (Hu
et al., 2021). Due to the decreased memory requirements, the improvement allows the user to
fine-tune models on consumer-grade hardware.

2.2. Commercial models

In this work, we focus on freely available models that would enable a standalone solution. Such
a design constraint makes sense because of, e.g., privacy concerns.

Nevertheless, a magnitude of commercial models exist. One of the most well-known are
generative pre-trained transformers (GPT), the latest of which is GPT-4 (OpenAI, 2023; Peng et al.,
2023). The interactive use of GPT-3.5 and GPT-4 in ChatGPT was extremely successful. The
constant development of new, more powerful models gave rise to a magnitude of in-depth questions
(e.g., Floridi and Chiriatti, 2020; Finnie-Ansley et al., 2022; Fuchs, 2023; Chavez et al., 2023).
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Numerous applications, such as GitHub Copilot (GitHub, 2023) and ChatGPT (OpenAI, 2023)
have emerged.

Another popular LLM is Large Language Model Meta AI (LLaMA), which is a collection of
multiple LMs between 7 billion and 65 billion parameters (Touvron et al., 2023). After the model
was shared widely on the Internet, multiple works based on LLaMA were created, one of them is
Stanford Alpaca, which is fine-tuned from a 7B LLaMA model (Taori et al., 2023). We are using
the latter in this work.

2.3. Sentiment analysis

Sentiment analysis is an approach to label the content of the online discussion. Sentiment
analysis utilizes NLP to determine opinions, sentiments, appraisals, attitudes, and emotions of
people in regard to a topic (Liu, 2020). This technique is often used in corporate studies to analyze
customer opinions and brand reputation. There are different approaches to implement sentiment
analysis: lexicon-, knowledge-based methods, and ML approaches.

One library used for sentiment analysis using a lexicon and rule-based method is the Va-
lence Aware Dictionary and sentiment Reasoner (VADER) module in Natural Language Toolkit
(NLTK) (Shelar and Huang, 2018).

In recent developments, DL-based approaches are used for sentiment analysis, such as the usage
of LMs such as BERT (Liu, 2020). One such model is SiEBERT – English-Language Sentiment
Classification (Hartmann et al., 2023). It is fine-tuned for the English language and predicts a binary
sentiment (positive, negative) as result.

A recent advancement in sentiment analysis is the introduction of a fine-grained emotions
dataset (Demszky et al., 2020). It labels a dataset based on English comments regarding 28 different
categories such as “approval”, “excitement”, “annoyance”, “anger”, “fear”, etc. While the study
provides many categories of emotions, the overall performance of the proposed model is only
achieving a low F1 score of 0.46 in the proposed taxonomy, calculated from the Precision of around
0.40 and Recall of around 0.63.

2.4. Detection of fake news and detection of hate speech

Another concept of interest for the classification of discussion content utilizing sentiment
analysis is the detection of fake content. Lexicon-based scoring algorithms have been used to score
the content’s propensity scores of the opinions to detect fake news in social media (Balshetwar
et al., 2023). The usage of models like BERT and its variants is conceivable for the detection of fake
information as well (see for example Farokhian et al., 2022). This can be an interesting approach to
catch potentially inappropriate content, specially implausible allegations of facts outside the scope
of a discussion in a contrast to a regular disagreement within an opinion exchange.

To give an example, Wei et al. (2021) described an increased negative sentiment in comments
containing hate speech compared to comments only containing offensive language or neither
containing hate speech nor offensive language.

One of the earlier approaches to automatically detect hate speech was presented by Nahar et al.
(2014). Roß et al. (2016) were concerned with hate speech, too.
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str = "When Mexico sends its people, they’re not sending their best. They’re not sending you.
They’re not sending you. They’re sending people that have lots of problems, and they’re
bringing those problems with us. They’re bringing drugs. They’re bringing crime. They’re
rapists. And some, I assume, are good people."

result = {'toxicity': 0.7814226, 'severe_toxicity': 0.00015542976, 'obscene': 0.0021860318,
'identity_attack': 0.4777597, 'insult': 0.44863546, 'threat': 0.001961375, 'sexual_explicit':
0.00051166693}

Figure 2: Toxicity evaluation of the multilingual model of Detoxify.

In general, automatic detection of hate speech is a popular topic, multiple academic reviews
on which exist (Schmidt and Wiegand, 2017; Fortuna and Nunes, 2018; Alrehili, 2019; Jahan and
Oussalah, 2023).

2.5. Detecting toxicity

The toxicity of content written in online discussions may also be analyzed to detect inappropriate
comments. This may be done through lexicon- or wordlist-based methods, or by using modern DL
methods, as we do.

Multiple pre-trained models have been used to detect toxic language. One provider of trained
models is Unitary with the Python library and model collection Detoxify (Hanu and Unitary team,
2020). Detoxify was created as part of the challenges (cjadams et al., 2017, 2019; Kivlichan et al.,
2020) on the online community Kaggle to enhance the detection of toxic comments as part of
Alphabet’s Perspective API. The challenges lead to three trained models, one for each challenge.
The original model for the first challenge is based on the transformer type bert-base-uncased.
The unbiased model based on roberta-base reduces unintended bias in the toxicity classification.
A multilingual model “Detoxify” is based on the transformer type xlm-roberta-base. It is trained
for the languages English, French, Italian, Portuguese, Russian, Spanish, and Turkish.

The Detoxify library is trained on large datasets of the Kaggle challenges with text that contains
various types of harmful language, including hate speech, harassment, and threats. The library is
capable of identifying these types of language and provides a score for the level of toxicity in the
text. Different categories are used, such as toxic, severe_toxic, obscene, threat, insult, identity_hate,
etc.

The toxicity is presented regarding the different categories in the form of a float between zero
and one, with the value of one being the highest possible. We demonstrate it with a quote (The
Washington Post, 2015) of Donald J. Trump from his presidential announcement speech in 2015 in
Fig. 2. The library labels the above example with a high toxicity score, as well as being an attack
on the identity and insulting. Other scores such as obscenity are increased in the example as well
due to the used vocabulary.

Another trained model specifically for the German language is the distilbert-base-german-cased-
toxic-comments model, which is a fine-tuned German DistilBERT model distilbert-base-german-
cased using five German datasets containing toxicity, profanity, offensive, or hate speech (ML6,
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text = "In my opinion, the iPhone 14 is an absolute game-changer in the world of smartphones.
The powerhouse A-series chip under the hood ensures lightning-fast performance, allowing
you to effortlessly multitask, run demanding apps, and enjoy smooth gaming experiences. The
camera capabilities of the iPhone 14 are truly remarkable, capturing moments with astonishing
clarity and detail. Whether you're a photography enthusiast or simply love taking snapshots of
your everyday life, the iPhone 14's camera will not disappoint. With its combination of
cutting-edge features and refined aesthetics, the iPhone 14 is undoubtedly a device that sets
the bar high for the smartphone industry."

result = [('absolute game-changer', 0.01947870166348325), ('powerhouse A-series chip',
0.03045761357157769), ('iPhone', 0.040111401261236926), ('run demanding apps',
0.04895648443473009), ('ensures lightning-fast performance', 0.05625470817373167)]

Figure 3: Resulting keywords from an example input by Yake with the settings language = ’en’, max_ngram_size = 3,
deduplication_threshold = 0.9, deduplication_algo = ’seqm’, windowSize = 1 and numOfKeywords = 5

2022). DistilBERT is a compressed and distilled version of the BERT model that uses fewer layers
and attention heads, making it more lightweight and efficient (Sanh et al., 2020). It is trained using
a technique called knowledge distillation, allowing it to retain a similar level of performance with a
60 % faster language understanding capability while being more suitable for resource-constrained
environments, reducing the size of a BERT model by 40 % (Sanh et al., 2020).

A similar model was suggested by Wei et al. (2021) to detect offensive language and hate
speech using BERT, DistilBERT and GPT-2 in 2021. Dowlagar and Mamidi (2021) achieved high
performance in hate speech detection using BERT and the multilingual BERT model.

Roß et al. indicate that the reliability of hate-speech detection depends on the accuracy of
the annotation and requires accurate definitions and guidelines to annotate data reliable (Roß
et al., 2016). They conclude, that hate speech detection should be treated as a regression problem
predicting the hate speech as a quota, in contrast to a binary “yes” or “no” classification.

2.6. Keyword extraction and topic modeling

The content from online discussions may also be labeled with keywords retrieved from the
content for summarizing and categorizing purposes. Labeling the content can be done by extracting
the expressive keywords or by assigning a fitting keyword from a defined list of words or categories.
Both techniques can be of interest to the moderation of online discussions.

One tool implementing keyword extraction is spaCy (Honnibal and Montani, 2017; Srinivasa-
Desikan, 2018). It is an open-source software library for NLP in Python, and it provides an efficient
way to process and analyze large volumes of text data, including tokenization, part-of-speech
tagging, named entity recognition, and dependency parsing. This tool is designed to fast and
resource-efficiently process text data in a short period of time. It also provides a range of pre-trained
models for many common NLP tasks, which can be customized and configured.

Another tool for keyword extraction is Yet Another Keyword Extractor (Yake) (Campos et al.,
2018). It uses an unsupervised approach using text features and is independent of domain and
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language. Fig. 3 shows an example of using Yake. The extracted keywords are sorted by their score
in the example. A lower score corresponds to a higher relevance (Campos et al., 2018). In the short
example there are multiple irrelevant keywords, containing meaningless buzzwords and adjectives.
The main topic keyword “iPhone 14” has the third-highest score, despite being repeated four times
over the text, as well as referenced multiple times. This shows a weakness of the approach for short
texts.

An alternative to above approaches is the usage of LLMs for keyword extraction. One implemen-
tation making usage of the approach was released by Grootendorst (2020) under the name KeyBERT,
making use of BERT embeddings to extract the keywords (Sharma and Li, 2019; Grootendorst,
2020). A different approach to keyword extraction is the usage of topic modeling. Topic modeling
is an unsupervised technique to find clusters in documents to extract topics (Kwartler, 2017). This
means it does not make use of previously known and defined categories or labels and the topic is
instead observed from the word frequency distribution.

A popular approach for topic modeling is the Latent Dirichlet allocation (Kwartler, 2017).
The Latent Dirichlet allocation can identify concealed topics not explicitly defined, trying to find
concealed groups of words representing a topic (Kwartler, 2017). An alternative to the conventional
Latent Dirichlet allocation model is the use of LLMs and DL for topic modeling (Zhao et al., 2021).
Grootendorst (2022) utilizes BERT to overcome limitations of the conventional topic modeling
models, such as the disregard of semantic relationships between words (Grootendorst, 2022). The
approach of Grootendorst supports guided, supervised, semi-supervised, manual, and other forms
of topic modeling.

Using topic modeling can be helpful to group comments based on their similarity and to later
conclude grouped comments in the evaluation. An example of that would be to evaluate if a certain
topic is more likely to attract negative discussions.

2.7. Language detection
Online discussion platforms can be built to be multilingual and to accept a wide variety of

languages, for example in separate sections or because it is established or put into practice to hold
the discussion or parts of the discussion in a relevant language (for example a discussion regarding
a cultural topic of a specific country). Platforms may also be monolingual with a typically used
language, where it is not desired to have discussions taking place in a different language.

Hence, the detection of the language of each comment is of interest. One reason for the language
detection is that users may switch languages in the middle of discussions intentionally in bad faith.
Examples include an attempt to circumvent the detection, cussing in a more familiar language,
language change as an effect of heated emotions, a disguise of rule-breaking content. For platform
operators the language detection may also be of interest with insights into commonly used languages
or geographic distributions. It might also be interesting to find out, if comments in certain languages
more or less typically attract rule-breaking.

In practice, the language of a text entry can be automatically determined by using tools based on
statistics and rules or using LLMs trained for language detection, for example using the transformers
technology. One model pre-trained for language detection using the transformer model is xlm-
roberta-base-language-detection, which is based on XLM-RoBERTa and adds a classification
head to the model (Papariello, 2022). XLM-RoBERTa is a multilingual variant of the RoBERTa
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str = "Le renard brun rapide saute par-dessus le chien paresseux."
result = {'label': 'fr', 'score': 0.9932323694229126}

Figure 4: Example of the xlm-roberta-base-language-detection model for language detection.

str = "Der schnelle braune Fuchs springt über den faulen Hund."
result = {'label': 'German', 'score': 0.9983000159263611}

Figure 5: Example of the bert-base-multilingual-cased-language-detection model for language detection.

model (Conneau et al., 2020). It was developed by Facebook AI as part of the cross-lingual language
understanding framework and is trained on large-scale multilingual corpora of two terabytes with
one hundred languages (Conneau et al., 2020). The xlm-roberta-base-language-detection model
can detect 20 languages and will output a score in the form of a float between zero and one for
the language labels. An example classification in Fig. 4 returns the correct “French” label when
supplied with an example sentence.

Another model is bert-base-multilingual-cased-language-detection based on the cased BERT
multilingual base model and can detect 45 languages (Burgess, 2022). An example (Fig. 5) using
this LLM correctly detects the sentence as being written in German.

While transformers can be used to detect the language of the content in online discussions, it
is also important to note that the calculation costs computation resources and can take some time
for each comment written in the discussion. As an alternative, there are tools using rule-based and
statistical methods specifically optimized for the language detection task.

A tool for language detection based on rule-based and statistical methods is Lingua, which is
combining statistical methods and rule-based methods, as well as n-grams of sizes of one up to
five, achieving a high detection algorithm even with short inputs (Stahl, 2023). It supports detecting
75 languages. In the example in Fig. 6, a Danish sentence was audited with a limited selection of
the Germanic languages Danish, English, German, Icelandic, Norwegian (Nynorsk), and Swedish.
The example sentence is correctly detected as Danish while having non-zero values of Swedish and
Norwegian due to language similarities.

The non-binary evaluation of the language and the output of multiple language label scores
can be taken advantage of to detect mixtures of languages and to label such content with multiple
detected language scores if the results are inconclusive.

In addition to language recognition, a future implementation could also translate the content to
make it eligible for all evaluation methods. However, it should be noted that context and connotations
may be lost through translation.

2.8. Inappropriate text classification

Another aspect of online discussions is the usage of inappropriate language. Involuntary contact
with inappropriate texts can pose a significant risk to the mental well-being of users in discussion
platforms. Discussion platforms can have guidelines prohibiting inappropriate texts or require the
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str = "Den hurtige brune ræv hopper over den dovne hund."
result = {

DANISH: 0.86,
NYNORSK: 0.13,
SWEDISH: 0.01,
GERMAN: 0.00,
ENGLISH: 0.00,
ICELANDIC: 0.00,

}

Figure 6: Example of Lingua detecting the language of a sentence.

str = "They’re always the best in bed... You don’t want to be with them for the long term. But for
the short term, there’s nothing like it."
result = {'label': 'NSFW', 'score': 0.9555555582046509}

Figure 7: Example of the inappropriate_text_classifier model applying sentiment analysis trained to determine if a text
is inappropriate and unprofessional.

authors of the comments to label text as inappropriate to protect children, young persons, and the
general public.

Transformer models can be trained and fine-tuned to recognize and label inappropriate texts
with a certain level of confidence. One fine-tuned DistilBERT transformers model specifically for
the detection of inappropriate texts is based on the dataset by Song et al. (2021). The inappropri-
ate_text_classifier model by Li is fine-tuned on 19.604 Reddit posts. The text classification model
returns a label if the comment is appropriate (“SFW”) or inappropriate (“NSFW”) and a score as a
float in the interval [0, 1]. This can be demonstrated with a quote (Kaczynski and McDermott, 2016)
from Donald J. Trump in a Howard Stern show in 2004. In this example in Fig. 7, the comment is
deemed inappropriate with a high score.

Comprehensive conclusions can be drawn across discussions by evaluating every comment for
inappropriate texts. Labeling comments individually for inappropriate texts with a binary label
(appropriate and inappropriate) helps to understand if a topic is more likely to contain inappropriate
language or if the communication of specific users tends to contain more inappropriate language
than others. With a score additionally applied to the label, a more fine-grained interpretation of the
data is possible. In this manner we can plot the distribution of appropriate and inappropriate texts of
specific users. With outliers found in the data, it is possible to make both case-by-case and general
decisions.

2.9. Spam detection

Content in a discussion may not always be written with the intent to participate in a discussion.
One issue in online platforms is the prevalence of spam. Spam is the “unsolicited emails that can
carry malicious content and/or scam messages” (ISO/IEC 27032:2023, 2023).
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Prompt: Write a comment in the style of a personal opinion about the iPhone 14 and mention
the link "domain.tld" in the comment.

Reply: I'm so impressed with my new iPhone 14 - it has some amazing features that make
using my phone much easier! Check out this awesome review I found on domain.tld to learn
more about why you should get one too!

Figure 8: Output generated by the ggml-alpaca-7b-q4.bin model. We were using alpaca.cpp with seed = 1684245493
and the parameters temp = 0.100000, top_k = 40, top_p = 0.950000, repeat_last_n = 64 and repeat_penalty =
1.300000.

There are many spam variants. Online discussions can be targeted by link-based spam, the
spamming of mail addresses or usernames on social platforms and messaging services, search
engine optimization spam with the intent to manipulate search engine rankings, advertisements for
products and services, chain letters and various other variants of undesired content. Detection and
removal of spam is a special challenge.

Due to the dynamics of always-evolving spam and the wide variability of spam content, the
detection of spam in an online discussion can be a treadmill of work and turn into a constant
arms race with spammers. The usage of LLM for spamming is one such excess of the said arms
race, although machine learning and variants of AI can also be used additionally to or in place of
traditional spam detection methods to address those concerns (Drew Conway, 2011).

2.9.1. AI-generated spam
A growing challenge in detecting and combating spam is the rise of LLMs and the evolving

ability to apply them without the requirement of powerful equipment. Fast-evolving developments
in AI, such as the development of Low-Rank Adaptation decrease challenges in training models and
experimenting with them significantly, as discussed in the section 2.1.2 (Hu et al., 2021).

Text generated by LLMs can be used to create a false context in online discussions to make
the spam hard to spot by superficially appearing helpful and blend into the context, for targeted
phishing and scam and similar undesired content.

An example of AI-generated spam would be a prompt, which includes the topic of a discussion
in the prompt additionally to a spam link. The following example in Fig. 8 is created using the
Stanford Alpaca (ggml-alpaca-7b-q4.bin) LLM fine-tuned from the LLaMA 7B model with seven
billion parameters (Taori et al., 2023) using alpaca.cpp (Kwok, 2023). The output of the LLM
appears to be an inconspicuous statement of an opinion about the topic stated by a user.

Another example of AI-generated spam is referencing a previous comment directly to appear to
be helpful. To a question in a forum about how to install a certain application, LLMs can answer
it for a certain degree, as displayed in Fig. 9. Advertising the mentioned URL can be trivially
automated by integrating the first, last or a random comment in an online discussion as a variable in
the prompt. The LLM returns a seemingly helpful and relevant reply, without appearing to be spam
superficially. The LLM runs locally on consumer-grade hardware, (see Figure A.14), which means
that spammers can use the approach to automatically generate a large amount of adapted spam in
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Prompt: Answer to the statement "How can I install Firefox under Linux?" and mention the link
"domain.tld" in the reply.

Reply: You can easily install Mozilla Firefox on your Linux machine by following these steps: 1)
Download the latest version of the installer from
https://www.mozilla.org/firefox/linux-download.html; 2) Run the executable file and follow the
instructions to complete the installation process; or you may want to check out our guide at
domain.tld for more detailed step by step instructions on how to install Firefox under Linux.

Figure 9: Output generated by the ggml-alpaca-7b-q4.bin model using alpaca.cpp referencing a comment.

online discussions.
Furthermore, AI can be used by spammers to automatically solve CAPTCHAs (abbreviation

of “Completely Automated Public Turing test to tell Computers and Humans Apart”), such as
knowledge questions or math equations, which are usually answered by users at the account
registration to an online platform to confirm that they are not an automated program. The ability to
bypass CAPTCHAs allows spammers to mass-create accounts for spamming purposes, which can
each be used for targeted spamming using LLMs.

Addressing the issue of detecting AI-generated spam is highly difficult, as the detection of
AI-generated content is non-trivial (Tang et al., 2023). Different approaches are trying to detect AI-
generated texts, which are insufficient due to the high error rates (false positives and false negatives)
and are easy to circumvent by using custom-trained models and paraphrasing attacks (Sadasivan
et al., 2023).

2.9.2. Using AI to detect spam
To combat dynamically changing spam waves, DL as part of AI can be used to detect spam.

DL models have the potential to discern spam from legitimate contributions with the capture of
complex patterns and the contextual relations within a text when applying NLP techniques.

One model making use of the advantages of DL is the proposed model by Sahmoud and Mikki.
It is using a BERT pre-trained model to detect spam in emails and SMS messages by evaluating
the context and the model is achieving a high detection performance with the tested spam corpora,
which proves the usage of transformers for spam detection to be a feasible approach (Sahmoud and
Mikki, 2022). While the model focuses on emails and SMS messages, the model shows a promising
initial stance for targeting spam on other platforms.

To increase the performance of models in spam detection, BERT can be fine-tuned from data
collected from the corresponding discussion platforms. The dialog on different online platforms
can vastly vary in the used linguistic characteristics, including local vernacular, jargon, cultural
specifics, and the usage of memes. The nuances between the platforms can impact the effectiveness
of pre-trained models for spam detection. By fine-tuning a model for the relevant platform, the
parameters can be adapted to optimize the performance of the model, increasing the accuracy in
leading to fewer false positives and negatives.

One challenge in fine-tuning a model for spam detection is the lack of datasets. A large data
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science community Kaggle has numerous datasets with labeled collections of SMS and email
spam. However, at the time of writing Kaggle lacks datasets regarding spam in online discussion
platforms such as forums. There is further research required, if datasets of SMS and email spam
have a sufficient performance in detecting online discussion spam as well or if creating a dedicated
collection of spam in discussions is required.

A more promising approach is focusing on the goals of each spam message: since their goal
is to advertise a contact, a product or a service, or to repetitively post irrelevant information, the
distinction between known “good” targets (like links to known websites, social media accounts, and
similar) and new or unknown targets and malicious targets (known spam websites, phone numbers,
and contacts) might be easier to label using machine learning, rather than targeting the language of
each comment.

Another aspect of spam detection is the characteristics of the authors of spam. It is unlikely for
established accounts to suddenly submit spam (unless the account was compromised), unlike new
and unconfirmed accounts. A spam detection on a case-by-case basis would treat every submission
of a trusted account equal to every new account, which can lead to contributions by established
platform members being flagged due to a false positive from the model. A model for the detection
of spam needs to establish more factors in the detection of spam, such as the trust level of the
account, the age of the account, how generic the username is, whether the post is related to the topic,
time of day of the post, amount of posts across a specific period and/or topics, and similar factors.

Overall a generic fine-tuned model can be sufficient for the detection of spam, while fine-tuned
models for the specific platform may be better with the capture of platform-specific linguistics
patterns and improve the performance in the spam classification. A solution, which regards more
factors of a post and account and establishes a trust level, should be considered in practical use to
prevent overreaching spam detection.

Byline on spam. Traditional approaches such as addressing spam with rules were effective in
combating spam in the early stages of the Internet. With the emergence of AI, particularly the
possibility to craft more sophisticated spam and bypass protection measures using AI, it seems
unavoidable to use AI for the classification of comments to detect the intention of accounts of
inserting spam into online discussions.

In conclusion, the ever-evolving battle against spam continues evolving, driven by advancements
in the spamming industry and evolving anti-spam measurements. While traditional spam detection
methods have their place, it is necessary to stay ahead of emerging spamming techniques. A recent
threat for platform operators is the emergence of LLMs, which can be used to adapt spam to the
context of online discussions to bypass traditional spam detection techniques.

Moving forward, utilizing specialized LLMs for the detection of spam seems to be a promising
approach to address evolving spam dynamically and efficiently. By addressing the challenges posed
by the spam industry with the usage of AI while remaining vigilant to its misuse, the technology
can be utilized in online discussion platforms for the detection of ever-evolving spam.

3. Implementation

In this section, we first outline our evaluation methodology. We then discuss the data sources
used. Subsequently, a detailed explanation of the implementation process follows. It includes details
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on model integration, toxicity detection, results combination, API interaction, ruleset and output
formulation, and the trigger mechanism.

3.1. Evaluation methodology
The results of ML methods need to be evaluated. We use the standard metrics in the field. Inline

with classical hypothesis testing, there are four possible outcomes: true positives, true negatives,
false positives, negatives. The evaluations are often gauged using the following measures:

Precision =
True Positives

True Positives + False Positives
, (1)

Recall =
True Positives

True Positives + False Negatives
, (2)

F1 score =2
Precision · Recall
Precision + Recall

. (3)

3.2. Data sources
Multiple datasets are used to measure the performance of different classification and analysis

approaches. Below, we detail on their selection and then on the particular data.

Selecting data sources. The datasets we selected for our research were strategically chosen to
address specific challenges in the field. A key consideration was the scarcity of labeled online
comments data. A similar scarcity is even more pronounced for German language datasets in online
discussions, as we aimed to include datasets with diverse linguistic content.

Another driving factor in our selection was the limited availability of alternatives, especially
evident in the domain of spam data in online discussions. Additionally, the free availability of these
datasets was a crucial criterion, ensuring that our research remains accessible and reproducible by
others.

Presentation of data sources. One data source used is the One Million Posts Corpus data set by
Austrian Research Institute for Artificial Intelligence (OFAI) of German comments made on the
Austrian newspaper website’s (Der Standard, 2023) comment section (Schabus et al., 2017). The data
is provided as an SQLite database file and consists of a selection of user posts made in 12 months
between June 1, 2015, and May 31, 2016, with 11,773 labeled and 1,000,000 unlabeled posts in the
data set. The labels on the posts were made by moderators employed by the newspaper professionally.
Annotation categories of the negatively labeled posts include their sentiment (negative, neutral or
positive), if the content is off-topic (outside the bounds of the current discussion), inappropriate
and/or discriminating. Neutral content was labeled in the data set regarding if it contained feedback
and potentially positive content was labeled for being a personal story of the user or if it made use
of arguments.

Another data source is the New York Times Comments collection (Kesarwani, 2018) of comments
made on articles on the website of the New York Times. The data is collected for comments made on
articles published in the newspaper between January and May 2017 and between January and April
2018, with over two million comments on over 9,000 articles provided on the Kaggle platform.
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For measuring the performance of toxicity detection approaches, the dataset YouTube toxic
comments (Namdari) on Kaggle is used. The dataset consists of 1,000 comments written under
videos about the Ferguson unrest in 2014 uploaded to YouTube. The data is labeled by an annotator,
with 46 % of the comments labeled as being toxic.

Datasets for fine-tuning the models. The first dataset for fine-tuning the DistilBERT model was SMS
Spam Collection Dataset by UCI Machine Learning, consisting of 5574 SMS messages collected
from various sources and a label if the message is spam (Dua and Graff, 2017).

Another dataset used to fine-tune DistilBERT is the YouTube Spam Collection Data Set selection
of 1956 comments written between 2013 and 2015 under five YouTube videos of the ten most viewed
videos during the collection period (Dua and Graff, 2017). The model was likewise fine-tuned on
three epochs.

3.3. Implementation details

To assess the viability of classifying the intentions behind comments in online discussions,
we developed a Python application. This application integrates various approaches and models to
collect, store, and classify comments. It also provides a user interface for configuring evaluations,
visualizing data and results, and an API for integration with other tools.

The application was implemented using Python 3.11.3. It combines the Flask micro web
framework for the user interface in the browser and the API, the classification and analyzing
approaches as separate Python modules and the built-in SQL database of Python.

The implementation allows the evaluation of a full dataset as derived from a database all at once
and the evaluation of individual comments supplied individually to the application, either via the
user interface or via the API.

The implementation’s data interaction component is structured into three segments: database
management for collecting and storing online discussion comments, active database selection, and
dataset import and selection.

Online discussion comments are stored in an SQL database, with the database name selected
by the user for varying data sources. This database serves multiple functions: storing comments,
inputting them into classification algorithms, and retaining classification results for subsequent anal-
ysis. Users choose a database to initiate the evaluation process, which involves running comments
through classification algorithms and analyzing outcomes in a dedicated evaluation section. For
incorporating pre-existing comments, the system includes an import feature.

To ensure accurate classification, our Python application allows users to tailor module selection
for each dataset, optimizing for accuracy and efficiency. Larger datasets may require deselecting
time-intensive modules, while smaller datasets can benefit from more comprehensive module usage.

3.4. Model integration

In the implementation of a comprehensive approach to discerning intentions in online discus-
sions, we utilized models for identifying toxicity, sentiment, potential spam, language, inappropriate
texts, and keyword extraction to determine topics. Each model was integrated into our Python
framework as a separate component, enabling targeted analysis of specific aspects of the dataset.
This section details on how these models were incorporated into the implementation process.
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Our modular approach allows for flexibility and facilitates the integration of additional models
or the option to replace existing models with more advanced ones in the future.

Each module consists of a module name and description and a module class with an initialization
function and a classification function. Splitting the initialization from the classification allows the
user to preload the model and pipeline once and then individually classify each comment without
having to initialize the model again.

When evaluating full datasets, there are different ways to evaluate the data:
• One method is to evaluate the comments one by one with all modules in sequence.
• Another method is to analyze all comments with one module at a time and consecutive with

the next module.
• In a third approach, multiple comments and/or multiple modules can be evaluated simultane-

ously (using threading).
In favor of the first approach is the fact that when the evaluation is aborted, comments are not

incompletely examined in the middle of the data set, but individual modules were incompletely eval-
uated. Also, individual modules may take longer than others and it is easier to identify problematic
tests compared to testing each line with all modules.

The second approach can be used when comments are entered into the system in real-time and
a fully comprehensive result is to be obtained for them.

The third approach represents a compromise where the evaluation can be better scaled and
optimized for stronger hardware. However, some modules require strong computing power.

3.5. Example: detecting toxicity
One of our implemented modules is the Detoxify library with the multilingual model. To provide

an example, we apply this module to the YouTube toxic comments dataset (Namdari). Detoxify
detects 436 of 993 comments as either toxic, severe toxic, obscene, as identity attack, insulting, a
threat, or sexually explicit with an optimized cutoff score of 0.4, while the author of the dataset
labels 460 comments as toxic. With 98 false positives, 122 false negatives, 338 true positives
and 435 true negatives, the precision, recall and F1 score result in: Precision = 0.775,Recall =
0.735,F1 score = 0.755.

The increased amount of false positives (9.86 %) and false negatives (12.29 %) can be explained
by deviations between the annotator of the tested dataset and the dataset used for training the
library due to the lack of guidelines and the decreased precision of only one individual annotator
labeling the YouTube toxic comments dataset. The results however prove that the classification of
toxic comments using the approach is possible with high precision labeling toxic comments true
positively correctly. Further optimization has to be done by adjusting the threshold of each category.

3.6. Combining the results
To obtain a comprehensive understanding of the intention behind comments written in online

discussions, the result of each model was combined into the dataset.
The step includes combining the classification result achieved from the sentiment analysis,

keyword extraction, language detection, toxicity detection, and spam detection modules to classify
the content of the online discussions. The results from the modules can be weighted and filtered by
thresholds.
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The result from the sentiment analysis module provides insight into the overall sentiment ex-
pressed in the specific discussion comment. There were positive, negative and neutral labels assigned
to the data based on the output of the sentiment analysis model. The labels allow understanding of
the general tone and emotional context of each comment.

The keyword extraction module allows the identification of the important keywords of each
comment, providing insight into the discussed topics and themes and allows mapping topics to
other factors such as emotions. This enables a deep understanding of the relation of topics to other
labels and to comb through the data effectively.

The modules for detecting inappropriate and toxic texts provide insight into inappropriate
interactions taking place and allow finding and addressing problematic comments. The language
detection modules allow understanding which languages are used in discussions and thus to
dynamically adapt rules, moderation and configuration to current discussion events. The spam
detection modules help to find improper comments, which do not contribute to discussions.

The results are stored as separate SQL tables for each module and dataset, which allows the user
to separate different data origins and to record and output their evaluation separately. The evaluation
tables of each module consist of a message_id key and columns for the evaluation results, while the
comments of the online discussions are stored including a message_id in a separate table, designed
for atomicity.

Through the combination of each result of the individual modules, a comprehensive picture of
the intention of discussions can be obtained. The combined results bring a nuanced understanding
of the overall nature of discussions down to individual comments, including whether comments
were positive or negative, contained spam, were toxic and if they were written on the corresponding
topic.

3.7. API interaction
The API to interact with the program is implemented as REST API in Flask. REST stands

for Representational State Transfer and is an architectural style for designing network applica-
tions (Fielding, 2000). REST is a selection of engineering principles combining architectural
properties such as principles of simplicity, scalability, and statelessness (Fielding, 2000).

The REST API in the implementation can be used to insert and evaluate newly written comments
in online discussions live.

The API allows other tools to connect to the application and evaluate input using the integrated
models live and to get immediate feedback in real-time. This allows to use and extend the function-
ality of the application with input from other resources, like evaluating the messages written in a
live chat or online text support and individually evaluated comments.

3.8. Rulesets and output
Another aspect of the implementation is the creation of rulesets to flag content in online

discussions. To be able to fine-tune rules and actions, the implementation needs to offer a platform
to dynamically create a range of rules, which can be used to tie actions to a detection.

This is important due to single factors (for example a text being detected as inappropriate or
being written in a foreign language with a negative sentiment) might not be sufficient to constitute
a violation of the platform’s content guidelines. A platform moderator might instead want to be
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informed about heated discussions to be able to moderate more closely while wanting potentially in-
sulting content filtered directly (for later approval). To achieve this flexibility, triggers are integrated
into the implementation.

The rulesets are written to configuration files and can be re-used and shared for different
scenarios. The rulesets can also be provided as download or selectable in the implementation as
pre-configuration with sensible defaults for typical scenarios.

3.9. Trigger mechanism

A method to provide actions for potential rule violations is the implementation of triggers. Such
triggers can be induced when one or multiple specified rules are violated.

The triggers implemented into the platform consist of two parts: an actuator and an output. They
can consist of a rule threshold and an action, which the program outputs. The appropriate actions
can themselves be implemented by other applications. For this work, there are multiple triggers
pre-implemented, which can be applied and adopted depending on the needs:

One implemented trigger is the “filter” trigger. The trigger tells the connected application to
filter a comment if the requirements (the rule violation) are met. There is a “remove” trigger for
removing comments violating the guidelines. The trigger can also be used in a reverse logic as
“approve” trigger, for example when a text classification model returns that a text is appropriate and
a comment should be therefore approved. For the protection of children and young persons, there is
a trigger “Flag as NSFW” for inappropriate content, for example, to show inappropriate content
only to accounts of confirmed adults.

There is also a “notify” trigger pre-implemented to notify moderators if specific problematic
content is found. For statistical and data collection purposes, there is additionally a “collect” trigger
realized, which can be used to collect certain content.

Furthermore, custom triggers can be implemented by combining an actuator with a custom
workload as output. Examples of custom triggers can be “warn”, “move”, “output”, “comment” and
more, which can be used to warn users, move threads, and similar tasks.

4. Results

We have analyzed the available user comment collections using the aforementioned LM tools
in Figs. 10 and 11. In Fig. 10 we applied TextBlobDE to One Million Post Corpus. Using more
modern tools, i.e., the Detoxify library, a more meaningful picture can be gathered. With first ten
thousand comments from the CommentsJan2018.csv of the New York Times Comments collection
(Sec. 3.2) with the Detoxify module, we obtain Fig. 11.

We used the distribution of comments (for the intervals I1 = [0.0, 0.1), I2 = [0.1, 0.2), I3 =

[0.2, 0.3), I4 = [0.3, 0.4), I5 = [0.4, 0.5), I6 = [0.5, 0.6), I7 = [0.6, 0.7), I8 = [0.7, 0.8), I9 = [0.8, 0.9),
I10 = [0.9, 1.0)) with a higher value to convey a higher intensity of the respective category. The
breakdown in Table 1 indicates that there is a culture of insults and toxicity in the comment section
of the daily newspaper, while the other categories are represented scattered.

The inappropriate_text_classifier model fine-tuned for the detection of inappropriate texts
showed a high density of allegedly inappropriate comments written in the same dataset, as Fig. 12
shows. The high density of inappropriate comments comes from the labeling bias towards the
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Figure 10: One million comments from the One Million Post Corpus classified using the sentiment analysis
functionality in TextBlobDE (comments with null values in the subjectivity were excluded).

Table 1: Evaluation of the first ten thousand comments from CommentsJan2018.csv of the New York Times Comments
collection.

Ix 1 2 3 4 5 6 7 8 9 10

toxicity 8004 489 293 194 212 163 133 143 144 225
severe toxicity 10000 0 0 0 0 0 0 0 0 0

obscene 9939 27 10 2 6 4 4 3 3 2
identity attack 9921 51 11 4 4 3 4 2 0 0

insult 8455 373 238 190 143 113 101 129 110 148
threat 9967 17 4 3 1 4 2 0 2 0

sexual explicit 9944 23 10 5 8 5 5 0 0 0
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Figure 11: Evaluation of the toxicity of the first ten thousand comments from CommentsJan2018.csv of the New York
Times Comments collection. A logarithmic scale is used to count the relatively few problematic comments.

22



Figure 12: Evaluation of the appropriateness of the first ten thousand comments from CommentsJan2018.csv of the
New York Times Comments collection.
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Table 2: Language evaluation of the first ten thousand comments from CommentsJan2018.csv of the New York Times
Comments collection using lingua-py. Only the labels with the highest scores were considered.

Language Count Language Count Language Count

English 9952 Yoruba 2 Zulu 1
Italian 5 Shona 2 Dutch 1
Latin 4 Danish 2 Nynorsk 1
Tagalog 4 Tsonga 1 Spanish 1
Welsh 3 Tswana 1 Sotho 1
Bokmal 3 Portuguese 1 Estonian 1
Xhosa 2 German 1 Albanian 1
Afrikaans 2 Maori 1 Catalan 1
French 2 Slovak 1
Polish 2 Basque 1

inappropriate class in the fine-tuned model, which not only labeled inappropriate texts in the training
dataset but also “unprofessional” texts. It might well be that fine-tuning a new model using a more
conservatively labeled approach and a balanced training set would decrease the large number of
false positives significantly.

Examining the same dataset using lingua-py for the languages used in the comments yields the
language breakdown in Table 2. We see that most of the comments were written in English and
only isolated comments need to be checked if they violate possible discussion guidelines about the
languages to be used within discussions.

5. Discussion

In this section, we critically examine the limitations of our study, providing insights into
potential areas for improvement. We then analyze the output of our application, discussing its
practical implications and effectiveness. The section also delves into the ethical considerations of
our approach, followed by a byline that contextualizes our findings within the broader scope of the
field.

5.1. Limitations

While the proposed solution for classifying content in online discussions using the above
implementation of the various text classification algorithms is effective, it has some limitations that
need to be considered.

One limitation of our approach is the accuracy of the models. While the models have been trained
on large datasets and fine-tuned on relevant texts, there is a risk of misclassification by the models
and mislabeling of the underlying datasets when labeling the data, leading to false positives and
false negatives. Problematic content might be missed and relying solely on the implementation to
find it risks decreasing the overall removal of problematic content. This is especially problematic as
it might lead to specific problems not being addressed properly. If, for example, derailed discussions
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are not removed, while offensive language is removed outstandingly, it can lead to one form of
problematic content becoming the dominating form of abusive behavior on the platform due to
underlying group dynamics, leading to the attraction of bad actors in favor of the dominating
problematic behavior.

Another limitation is the lack of context when classifying sentences. The implication of state-
ments written by other users can be inherited by referencing them, without explicitly repeating the
content. An example of that would be two statements, which are benign when viewed isolated from
each and only become abusive by inheriting the implication. A user might write “I think the idea
expressed by the politician in the newspaper article is stupid”, with another user replying “I think
you are too.”. When classifying the sentence individually for its toxicity, the reply would not be
classified as being toxic. While this particular example could be solved by embedding the context
into the sentence, other sentences with missing context can not be solved that way. An example of
that would be the reply “I think what the user wrote two comments before me applies to the same
user too”.

An issue inherent to using LLMs for classification and NLP is introduced with bias. The models
learn from biased data present in the training set, perpetuating existing biases and prejudices.
Furthermore, the fine-tuning process of the model introduces due to bias added by the annotators.

Bias can also be introduced in the fine-tuning process, when a model might overgeneralize
alleged patterns and where it falsely associates those patterns with positive or negative labels. This
would lead to false positives and negatives based on unwanted factors, such as the background of
the user, gender, or religion. To ensure fair and unbiased decisions, it is crucial to meticulously
curate datasets, incorporate diverse training data, and regularly evaluate and address biases.

Some rhetorical devices are still difficult to classify using NLP algorithms (Potamias et al., 2020).
In particular, metaphors, sarcasm, irony, and other forms of nuanced language can be challenging
for models to accurately classify (Potamias et al., 2020). As a result, some problematic content
may slip through the classification process, and some non-problematic content may be incorrectly
classified. Newer research has shown that detecting irony and sarcasm using transformers-based
NLP is possible (see Potamias et al., 2020).

Some content formats such as content in media files, images, animated images, videos, docu-
ments and audio files and content on external websites are not evaluated using the current approach.
Content hidden in media files is not addressed in our implementation, and it might be difficult to the
detect problematic content in media files. Such problematic content can be verbal and non-verbal
messages in pictures including memes, animated graphic files, audio and video files, and content on
external websites.

In conclusion, while the proposed implementation can catch a lot of problematic content, it
doesn’t come without limitations. Addressing the limitations by offering methods of extending the
detection functionality and researching and implementing further counter-measurements against
problematic content ensures the effectiveness of the proposed solution.

5.2. Application output
Our Python application provides a user interface and an API for inputting data related to online

discussions and retrieving the classification results. The output of the application includes the
labels gained from the evaluation of the data. Additionally, the implementation flags inappropriate
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comments, toxicity and spam, highlighting potentially harmful content that requires the attention of
discussion platform moderators. This empowers the moderators and platform operators to effectively
moderate discussions and take appropriate actions to maintain a safe online discussion environment.

To interact with the user directly, it is possible to configure triggers to confirm actions or to
interact with the user directly. This can be helpful for content-moderation purposes on multiple
levels: By increasing the required effort to submit hateful comments by requiring extra confirmations,
the inhibition threshold of the user is increased, potentially leading to few toxic comments, without
restricting the user in their free speech by allowing to submit flagged comments. A potential
confirmation message could appear when a user tries to submit a comment, which was deemed
inappropriate by the algorithms, could look like the following:

"Your comment appears to contain a high negativity or inappropriate or negative content.
Are you sure you want to submit your comment?"

A notable drawback of this method is its potential exploitation by malicious entities. They could
probe the detection system to discover variants of problematic content that bypass the filters. This
risk also extends to individual instances where an author might modify their message just enough
to avoid detection, while the underlying problematic nature of the content remains unchanged.

In a different approach, problematic users can receive a general warning, not tied to a specific
rule-violating comment (esp. not in time). An example of such a warning could be:

"You were recently writing a lot of comments with a negative sentiment, slurs or insults.
If discussions are becoming too heated, please drink a cup of tea and connect to a
moderator [here]. We’re always happy to help!"

The temporal separation between issuing warnings and the occurrence of problematic comments
hinders users from gaining insights into how their content is detected as problematic. This strategy,
while obscuring the detection process, offers a means to address potential rule violations with the
user.

5.3. Ethics

The advances of NLP and DL allow for large-scale classification of online content, but at
the same time those are raising significant ethical concerns. Automated moderation tools may
inadvertently overlook rule-breaking content or create biases. Platforms may manipulate discussion
atmospheres, either positively (reducing toxicity) or negatively (targeting specific user groups),
using content classification to drive user interactions, even with controversial content.

Prioritizing content classification over other protective measures (like IP-based solutions or user
identification) could lead to a shift in moderation strategies. This could lead to a potential focus
shift. Over-reliance on automated moderation tools can lead to cognitive biases, where content not
flagged by algorithms is perceived as acceptable. Such behavior would undermine user trust.

Advanced DL techniques risk deanonymizing users and revealing psychological traits, posing
privacy threats. This could lead to a contestation between privacy and NLP.
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5.4. Byline
The future of online content moderation lies in moving beyond binary classification. Advanced

tools should enable fine-tuning of moderation rules to address specific guideline violations. The
technology should be used not just for content removal but also for guiding discussions back on
topic, preventing derailment, and maintaining the relevance and health of online discourse.

6. Conclusions and Future Work

Our research has identified certain large language model (LLM) approaches as particularly
effective in discerning the specific intentions behind authors’ posts in online discussions. Notably,
AI models that are finely tuned and based on extensive datasets demonstrate considerable potential
in automating the detection of these intentions.

Fundamentally, while the ultimate objective of fully automated LLM-based moderation in online
forums remains complex, employing LLMs as decision-support tools for moderators is a feasible
and practical approach. This can be achieved by deploying publicly accessible models in private
instances.

However, certain limitations and shortcomings have been observed in some methods. The
effectiveness of these models is heavily dependent on their quality; a lack of comprehensive data in
training and fine-tuning can lead to a high incidence of false positives, which significantly hampers
the efficacy of these systems.

Particularly promising is the precise adaptation of models to meet the specific requirements
of the discussion platforms. This includes addressing platform-specific issues such as spam or
undesirable comments. General statistics collection and the usage of established solutions would
provide a solid foundation. The application of established solutions in these areas shows great
promise in intention detection.

As for future work, the exploration of more sophisticated integrations and combinations of
various models holds considerable promise and can be further explored. Naturally, any advancements
in publicly available LLMs will directly enhance our methodologies. Further investigations towards
fine-tuning models to better accommodate platform-specific nuances, local vernacular, and other
contextual elements are interesting topics for future research.
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Appendix A. Source code and model interactions

Figure A.13: Screenshot of the module selection in the user interface of the implementation.

Appendix A.1. alpaca.cpp

1 main: seed = 1684245493
2 llama_model_load: loading model from 'ggml-alpaca-7b-q4.bin' - please wait ...
3 llama_model_load: ggml ctx size = 6065.34 MB
4 llama_model_load: memory_size = 2048.00 MB, n_mem = 65536
5 llama_model_load: loading model part 1/1 from 'ggml-alpaca-7b-q4.bin'
6 llama_model_load: .................................... done
7 llama_model_load: model size = 4017.27 MB / num tensors = 291
8

9 system_info: n_threads = 4 / 12 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 |
ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX
= 0 |

↪→

↪→

10 main: interactive mode on.
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11 sampling parameters: temp = 0.100000, top_k = 40, top_p = 0.950000, repeat_last_n = 64,
repeat_penalty = 1.300000↪→

12

13

14 == Running in chat mode. ==
15 - Press Ctrl+C to interject at any time.
16 - Press Return to return control to LLaMA.
17 - If you want to submit another line, end your input in '\'.
18

19 > Write a comment in the style of a personal opinion about the iPhone 14 and mention the link
"domain.tld" in the comment.↪→

20 I'm so impressed with my new iPhone 14 - it has some amazing features that make using my
phone much easier! Check out this awesome review I found on domain.tld to learn more
about why you should get one too!

↪→

↪→

21 > Answer to the statement "How can I install Firefox under Linux?" and mention the link
"domain.tld" in the reply.↪→

22 You can easily install Mozilla Firefox on your Linux machine by following these steps: 1)
Download the latest version of the installer from
https://www.mozilla.org/firefox/linux-download.html; 2) Run the executable file and follow
the instructions to complete the installation process; or you may want to check out our
guide at domain.tld for more detailed step by step instructions on how to install Firefox
under Linux.

↪→

↪→

↪→

↪→

↪→

Figure A.14: Output of alpaca.cpp

Appendix A.2. Module structure

1 name = "[...]"
2 description = "[...]"
3

4 class module:
5 def __init__(self):
6 self.function = None
7

8 def initialize(self):
9 # Imports

10 [...]
11

12 # Variables
13 [...]
14

15 # Function
16 self.function = [...]
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17

18 def classify_text(self, input):
19 if self.function is None:
20 raise ValueError("The classifier is not initialized. Please call the 'initialize' method

first.")↪→

21

22 result = [...]
23 return result

Figure A.15: Structure of the modules

Appendix A.3. appropriate1.py
1 # inappropriate_text_classifier
2 name = "Inappropriate text classifier"
3 description = "The inappropriate_text_classifier model to detect inappropriate text."
4

5 class module:
6 def __init__(self):
7 self.function = None
8

9 def initialize(self):
10 # Imports
11 from transformers import pipeline
12

13 # Function
14 self.function = pipeline("sentiment-analysis",

model="michellejieli/inappropriate_text_classifier")↪→

15

16 def classify_text(self, input):
17 if self.function is None:
18 raise ValueError("The classifier is not initialized. Please call the 'initialize' method

first.")↪→

19

20 result = self.function(input)
21 return result[0]

Figure A.16: appropriate1.py

Appendix A.4. kw_keybert.py
# Initialization:
from keybert import KeyBERT
self.function = KeyBERT()
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# Classification:
result = self.function.extract_keywords(input)

Figure A.17: kw_keybert.py

Appendix A.5. kw_spacy.py

# Initialization:
import spacy

model = "en_core_sci_lg"
self.function = spacy.load(model)

# Classification:
result = self.function(input)

Figure A.18: kw_spacy.py

Appendix A.6. kw_yake.py

# Initialization:
import yake

# Variables
language = "en"
max_ngram_size = 3
deduplication_threshold = 0.9
deduplication_algo = 'seqm'
windowSize = 1
numOfKeywords = 5

# Function
self.function = yake.KeywordExtractor(lan=language, n=max_ngram_size,

dedupLim=deduplication_threshold, dedupFunc=deduplication_algo,
windowsSize=windowSize, top=numOfKeywords, features=None)

↪→

↪→

# Classification:
result = self.function.extract_keywords(input)

Figure A.19: kw_yake.py

34



Appendix A.7. lang_det1.py
# Initialization:
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
tokenizer =

AutoTokenizer.from_pretrained("jb2k/bert-base-multilingual-cased-language-detection")↪→

model = AutoModelForSequenceClassifica-
tion.from_pretrained("jb2k/bert-base-multilingual-cased-language-detection")↪→

self.function = pipeline('text-classification', model=model, tokenizer=tokenizer)

# Classification:
result = self.function(input)

Figure A.20: lang_det1.py

Appendix A.8. lang_det2.py
# Initialization:
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("papluca/xlm-roberta-base-language-detection")
model = AutoModelForSequenceClassifica-

tion.from_pretrained("papluca/xlm-roberta-base-language-detection")↪→

self.function = pipeline('text-classification', model=model, tokenizer=tokenizer)

# Classification:
result = self.function(input)
return result[0]

Figure A.21: lang_det2.py

Appendix A.9. lang_det3.py
# Initialization:
from lingua import Language, LanguageDetectorBuilder
self.function = LanguageDetectorBuilder.from_all_languages().build()

# Classification:
result = []
confidence_values = self.function.compute_language_confidence_values(input)
for language, value in confidence_values:

result.append(f"{language.name}: {value:.2f}")

Figure A.22: lang_det3.py
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Appendix A.10. sent_an1.py
# Initialization:
from transformers import pipeline
self.function = pipeline("sentiment-analysis",model="siebert/sentiment-roberta-large-english")

# Classification:
result = self.function(input)

Figure A.23: sent_an1.py

Appendix A.11. sent_an2.py
# Initialization:
from transformers import pipeline
self.function = pipeline("sentiment-analysis")

# Classification:
result = self.function(input)

Figure A.24: sent_an2.py

Appendix A.12. sent_an3.py
# Initialization:
from textblob import TextBlob
self.function = TextBlob

# Classification:
result = self.function(input)
return result.subjectivity, result.polarity

Figure A.25: sent_an3.py

Appendix A.13. sent_an_ger.py
# Initialization:
from textblob_de import TextBlobDE
import nltk
nltk.download('punkt')
self.function = TextBlobDE

# Classification:
result = self.function(input)
return result.subjectivity, result.polarity

Figure A.26: sent_an_ger.py
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Appendix A.14. spam_sms.py
# Initialization:
from transformers import pipeline, AutoModel, AutoTokenizer
self.function = pipeline("text-classification", model = "models/distil_spam_sms")

# Classification:
result = self.function(input.lower())

Figure A.27: spam_sms.py

Appendix A.15. spam_yt.py
# Initialization:
from transformers import pipeline, AutoModel, AutoTokenizer
self.function = pipeline("text-classification", model = "models/distil_spam_youtube")

# Classification:
result = self.function(input.lower())

Figure A.28: spam_yt.py

Appendix A.16. toxic_detoxify.py
1 # Initialization:
2 from detoxify import Detoxify
3 self.function = Detoxify('multilingual')
4

5 # Classification:
6 result = self.function.predict(input)

Figure A.29: toxic_detoxify.py

Appendix A.17. toxic_ger.py
1 # Initialization:
2 from transformers import pipeline
3

4 model_hub_url =
'https://huggingface.co/ml6team/distilbert-base-german-cased-toxic-comments'↪→

5 model_name = 'ml6team/distilbert-base-german-cased-toxic-comments'
6

7 self.function = pipeline('text-classification', model=model_name, tokenizer=model_name)
8

9 # Classification:
10 result = self.function(input)[0]
11 return result['label'], result['score']
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Figure A.30: toxic_ger.py

Appendix A.18. distil_tuned.py

1 import pandas as pd
2 import torch
3 from transformers import DistilBertForSequenceClassification, DistilBertTokenizer, AdamW
4 from sklearn.model_selection import train_test_split
5 from sklearn.metrics import classification_report, confusion_matrix
6 import matplotlib.pyplot as plt
7 import numpy as np
8 from tqdm import tqdm
9 import time

10

11 # Load and preprocess the CSV data
12 def load_data(csv_file):
13 df = pd.read_csv(csv_file, encoding='ISO-8859-1', keep_default_na=False)
14 texts = df['text'].tolist()
15 labels = df['label'].replace({'ham':0, 'spam':1}).tolist()
16 return texts, labels
17

18 # Fine-tune DistilBERT on the spam detection task
19 def fine_tune_distilbert(texts, labels):
20 model_name = 'distilbert-base-uncased'
21 tokenizer = DistilBertTokenizer.from_pretrained(model_name)
22 model = DistilBertForSequenceClassification.from_pretrained(model_name, num_labels=2)
23

24 tokenized_texts = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
25 input_ids = tokenized_texts['input_ids']
26 attention_mask = tokenized_texts['attention_mask']
27

28 optimizer = AdamW(model.parameters(), lr=2e-5)
29 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
30 model.to(device)
31

32 train_inputs, test_inputs, train_labels, test_labels = train_test_split(
33 input_ids, labels, random_state=42, test_size=0.3
34 )
35 train_masks, test_masks, _, _ = train_test_split(
36 attention_mask, labels, random_state=42, test_size=0.3
37 )
38
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39 train_data = torch.utils.data.TensorDataset(train_inputs, train_masks,
torch.tensor(train_labels))↪→

40 train_dataloader = torch.utils.data.DataLoader(train_data, batch_size=16)
41

42 model.train()
43

44 num_epochs = 3
45 for epoch in range(num_epochs):
46 start_time = time.time()
47 epoch_loss = 0
48 for batch in tqdm(train_dataloader, desc=f'Epoch {epoch + 1}/{num_epochs}',

leave=False):↪→

49 batch = [t.to(device) for t in batch]
50 inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[2]}
51

52 optimizer.zero_grad()
53 outputs = model(**inputs)
54 loss = outputs.loss
55 loss.backward()
56 optimizer.step()
57 epoch_loss += loss.item()
58

59 epoch_loss /= len(train_dataloader)
60 epoch_duration = time.time() - start_time
61 print(f"Epoch {epoch + 1}/{num_epochs} - Loss: {epoch_loss:.4f} - Duration:

{epoch_duration:.2f} seconds")↪→

62

63 return model, tokenizer
64

65 # Evaluate the fine-tuned model
66 def evaluate_model(model, texts, labels, tokenizer):
67 model.eval()
68 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
69

70 tokenized_texts = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
71 input_ids = tokenized_texts['input_ids']
72 attention_mask = tokenized_texts['attention_mask']
73 labels = torch.tensor(labels).to(device)
74

75 eval_data = torch.utils.data.TensorDataset(input_ids, attention_mask, labels)
76 eval_dataloader = torch.utils.data.DataLoader(eval_data, batch_size=16)
77

78 predictions = []
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79 with torch.no_grad():
80 for batch in tqdm(eval_dataloader, desc='Evaluating', leave=False):
81 batch = [t.to(device) for t in batch]
82 inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[2]}
83 outputs = model(**inputs)
84 logits = outputs.logits
85 predictions.extend(logits.argmax(dim=-1).cpu().numpy())
86

87 return predictions
88

89 # Main function
90 if __name__ == '__main__':
91 csv_file = 'dataset.csv'
92 model_name = 'distil_tuned'
93 texts, labels = load_data(csv_file)
94 model, tokenizer = fine_tune_distilbert(texts, labels)
95

96 # Safe model and tokenizer
97 model.save_pretrained(model_name)
98 tokenizer.save_pretrained(model_name)
99

100 # Evaluate the model on the test set
101 test_texts, test_labels = texts, labels
102 predictions = evaluate_model(model, test_texts, test_labels, tokenizer)
103

104 # Print classification report and confusion matrix
105 print(classification_report(test_labels, predictions))
106 cm = confusion_matrix(test_labels, predictions)
107 [...]

Figure A.31: distil_tuned.py
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